Week 12

Introduction to Data Analysis for Physics

Overview

- Z-Scores
- P-Values
- Confidence Intervals
- Model Fits

Z-Scores

- Back to the Normal distribution $\mathcal{N}_{\mu,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ • Re-scale by $z(x) = \frac{x-\mu_x}{\sigma_x}$
- Recall with *linear* functions, the mean is $\mu_f = f(\mu_x)$
- And variance is $\sigma_f^2 = \left(\frac{\partial f}{\partial x}\Big|_{x=\mu_x}\right)^2 \sigma_x^2$

So what are μ_z, σ_z in terms of μ_x, σ_x

Z-Scores

• This is a *normalizing* transformation

- Puts things in a standard form:
- P(|z|<1)=.68
- P(|z|<2)=.95
- P(|z|<3)=.997
- So 99.7% of data should be within 3 standard deviations
- Obtained from integral: $P(|z| < z^*) = \int_{-*}^{z^*} \mathcal{N}_{\mu,\sigma}(z) dz$

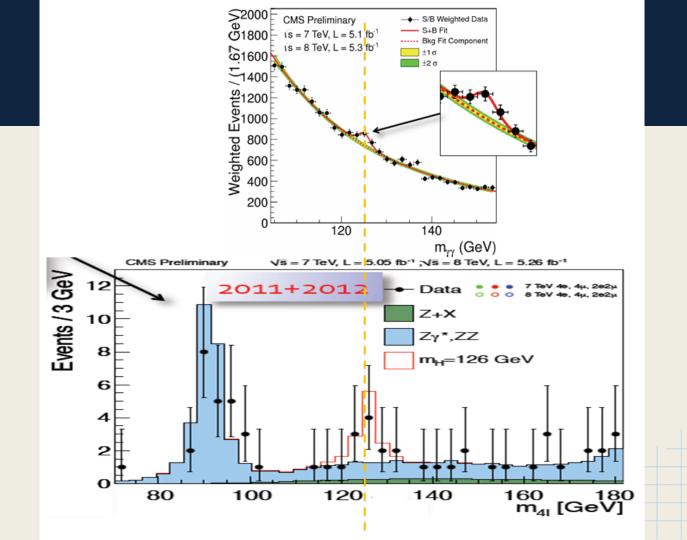
P-Value

• Related to probabilities in last slide: $p = \frac{1 - P(|z| < z^*)}{2}$

- This is the probability *under the assumption of a "null hypothesis,"* of obtaining a result as strange as we did.
- So if p < .05, only 1 in 20 trials should give a result this strange

P-Value

- Example: Higgs discovery
- Higgsdependence Day 2012, CMS and ATLAS release results
- Individually, find p<0.000001 relative to background expectation (the null hypothesis)
- Graph on next page



Confidence Interval

- Another way to report uncertainty
- Familiar with $\mu \pm \sigma$ notation, such as $125 \pm 0.4 \text{ GeV}$
- Have a "confidence level" of 0<C<1 such that $C = P(|z| < z_C)$
- Solve for z_C and use to find min and max values $x_{\pm} = \mu_x \pm \sigma_x z_C$
- Useful to say whether 0 is included at 99% confidence

Confidence Interval

- If 0 included, then cannot rule it out due to statistical error
- If 0 excluded, can rule out at that confidence level
- With Normal distribution, cannot have 100% confidence. Ever.

Model Fits

- Back to Mathematica!
- NonlinearModelFit[data, model, params, vars]

data = Table[{i, 2 i^3 + Random[]*.02}, {i, 10}]; fit = NonlinearModelFit[data, a x^b, {a, b}, x] fit["ParameterTable"]

Model Fits

- FittedModel provides statistics on how good the fit was
- Careful with interpreting values (P-Value is not probability this result is right, or anything of the sort)
- Effectively useful stats are estimate and error for modeling in error propagation