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Submission Requirements

Submit the assignment to data.analysis.physics@gmail.com by Wednesday at
5pm. Just submit the Mathematica document you create (typically a .nb
file).

Problem 1

In the Error Analysis section of the textbook (which we haven’t gone through
yet), there’s an example that shows that acceleration due to gravity on the sur-
face of the Earth is just about constant (http://www.cs.utexas.edu/~evanott/
PHY110C_Textbook/static/data_analysis/Analysis/error.html#example-watermelon-drop).

Let’s use Mathematica to see if we can prove this. From Newton, we know that
for us near Earth:

|ag(r)| = G
M

r2

with radius of the Earth being around 6370km. If we consider our “elevation”,
e, to be our distance above or below this “mean Earth radius” given by

R⊕ = 6.370× 106m

such that our real radius to the center of the earth is

r = e+R⊕

we can make a Taylor series expansion to see how much gravity changes as a func-
tion of elevation. Note thatM = 5.97×1024kg andG = 6.67×10−11Nm2kg−2.

Remember that when you use the Series command, you may need to make the
result a regular, computable function by using Normal on the result.
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a

Use Series[...] to make a first-order approximation to |ag(e)|. What is the
acceleration due to gravity in Austin (e = 150m)? Denver (e = 1609m)? Mount
Everest (e = 8848m)?

b

Compare your first-order approximations to the “true” values computed with
|ag(r)| = GM

r2 . Do they over- or under-estimate acceleration due to gravity? By
what factor?

c

Repeat steps a and c for a zeroth-order approximation and second-order ap-
proximation. From this, what can you conclude about the approximation of
using ag = 9.81ms2 near the surface of Earth - perhaps the most fundamental,
often unexplained, approximation in introductory physics courses?

d

No problem here, but if this problem made you wonder about how Earth’s grav-
itational field actually varies, check out “New ultrahigh-resolution picture of
Earth’s gravity field” in Geophysical Research Letters by Hirt et al (2013). The
figures show in particular how gravity varies over Mount Everest. In the supple-
mental information, Figure 3 shows how gravity varies in units of 10−5ms−2 over
the planet. The following link will use the UT proxy service to open the article
(so you can look at it with EID even if you’re not on the campus WiFi). http://
onlinelibrary.wiley.com.ezproxy.lib.utexas.edu/enhanced/doi/10.1002/

grl.50838/

Problem 2

With this problem, we’re going to build on what we did last week with the
planetary simulation, but only looking at one part: Halley’s comet. The data
is on the website for just Halley’s comet with sun always centered at (0, 0, 0),
giving a 2D representation of the problem. The data is just (x, y) for the comet,
again with each row being separated by 1800s. In this problem, We’ll be using a
well-known model for orbits of a comet and see how well it fits our data.
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Using the gravitational force F (r) = GMm/r2, and assuming polar coordi-
nates

r2 = x2 + y2, tan(φ) =
y

x

we can[1] determine that the radius as a function of angle for a comet is:

r(φ) =
c

1 + ε cos(φ)

where c is a length-scale constant, and ε is the unitless eccentricity.

a

Transform your data so that you have a listing of points (φ, r) rather than
(x, y). The coordinate transformations above are not quite good enough to
specify which solution for φ is preferred. In this case, we want φ to always
be increasing, so once you have calculated values of φ, you may want to use
Mod[myAngleList + 2Pi, Pi], which, for the values provided, will ensure that
φ increases and that there are no jumps in the data (to do this for a larger
data set would require a more complicated correction function, but here, this
is sufficient). Once you have that, use a ListPlot on the (x, y) version and a
ListPolarPlot on the (φ, r) data (preferably overlaying them with the Show

function) to ensure that you have transformed the data correctly (graphs should
be identical).

b

Use the FindFit function to get fitted values for c and e in r(φ) = c
1+ε cos(φ) .

You should be able to use the default least-squares method of curve fitting. Plot
this fitted function against the data - does it appear to match well by visual
inspection?

c

Using the following:

mHalley = MH = 2.2 ∗ 1014kg

msun = M� = 1.989 ∗ 1030kg

G = 6.67× 10−11Nm2kg−2

a =
c

1− e2

τ2 =
4π2

GM�
a3
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calculate the period of orbit for Halley’s comet based on your data (above,
period is simply τ). Does it match well with our knowledge of Halley’s comet
arriving every 75-76 years?

d

Finally, let’s consider whether our model seems to accurately portray what’s
going on in the simulation. Consider the difference between data and fitted
function robs − r(φ) for each point in the dataset. Looking at this quantity
versus φ, t, or robs, is there a visible pattern to the residuals? How big is this
difference in comparison to the actual value of the radius ((robs − r(φ))/robs)?
Is it negligible?
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