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For your final project, you will need to combine the data analysis and typeset-
ting skills you’ve used all semester. You will select one of the projects below,
then send us the completed LATEX and Mathematica files. As always, send it
to data.analysis.physics@gmail.com. The write-up should be a (semi-)formal
report on how you did what you did. We want to see the math you used, some
graphs / tables that help explain what you’re analyzing, and a little about the
Mathematica constructs used. You don’t need to tell us about basic things like
using a Table, but if you had a difficult integral or used a built-in distribution,
you should mention it. Furthermore, by reviewing your LATEX code, we should
see advanced topics like references, SI units, tables, matrices, etc. We need to be
able to easily see your mastery of material covered in this course. You need not
include everything we learned about, but enough to show what you’ve learned.
Don’t hold back.

1 Home Field Advantage

For this project, you will investigate the truth behind the “Home Field (Court,
etc.) Advantage:” professional teams tend to win during games played in their
local stadium. The data for this project were condensed from play-by-play data
from Basketball Geek [1], selecting all games from the 2008-2009 NBA season
(excluding those that went into overtime) for a total of 1125 games. The format
of the data is in Table 1. The data is on the assignment page of the online
textbook here.

Complete the sections outlined below, then write up results in a LATEX doc-
ument. Be sure to include some figures, tables, equations, or other struc-
tures.
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Home Q1H Q2H Q3H Q4H Away Q1A Q2A Q3A Q4A
BOS 20 14 19 16 CLE 19 12 13 17
CHI 19 14 22 20 MIL 25 18 19 18

...

Table 1: Representation of data set. Numerical values are number of points
scored in the quarter (QXH is points scored by home team, QXA is for the
away team). Each row is a different game. Included are the abbreviations for
the teams.

Figure 1: Example graphic indicating data and fitted normal distribution.

1.1 Game Results

To investigate the Home Field Advantage, we first need to see if such an effect is
present in the data at the end of the game. Calculate the difference in score at
the end of each game (scores from each quarter add, in case you aren’t the sports
type). If a Normal (Gaussian) distribution seems appropriate for the data, fit
the mean µ and standard deviation σ of the score difference at the end of the
game. Based on the mean, is there an advantage to playing at home? Based on
the mean and spread of the data, how often should we expect a home team to
win (using no information about player stats, etc.)? Show visually that the data
agrees with a Normal distribution by overlaying a probability density function
histogram and probability density function of the fitted Normal distribution
(something similar to Figure 1).

1.2 In-Game Progression

Now, let’s characterize how the point difference changes throughout a game
(on average). If we make the assumption that the play in each quarter is in-
dependent (first quarter performance has no bearing on fourth quarter, etc.),
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then we should expect the general properties of adding independent Normally-
distributed variables:

• Taking N (µ1, σ1)±N (µ2, σ2) gives a combined mean of µ = µ1 ± µ2.

• Taking N (µ1, σ1)±N (µ2, σ2) gives a combined variance of σ2 = σ2
1 + σ2
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(variances always add).

Let’s also assume (for the moment – we’ll test it momentarily) that each quarter
is approximately the same (µ1 ≈ µ2, σ1 ≈ σ2, etc.).

From this, can you come up with a model for the mean difference in score as a
function of percentage of time played so far during a game? For the standard
deviation of the difference in score as a function of percentage of time played
so far during a game? This creates functions µ(t) and σ(t) where t ∈ [0, 1]. We
know the final score and spread from subsection 1.1 , and we know the initial
score and spread as well (starts at 0–0 with σ = 0). In your report, please
discuss how you arrived at the functions you did.

Hint: µ(t) and σ(t) should have the boundary properties outlined above:

• µ(0) = 0

• σ(0) = 0

• µ(1) = µ = µ1 + µ2 + µ3 + µ4

• σ2(1) = σ2 = σ2
1 + σ2

2 + σ2
3 + σ2
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then also be able to predict the distribution at half-time (µ(.5) = µ1 + µ2, and
σ2(.5) = σ2

1 +σ2
2). If this part stumps you, feel free to ask your student teachers

about it.

1.3 Model-Fitting Game Progression

With the model for µ(t), σ(t) from subsection 1.2, use a LinearModelFit or
NonlinearModelFit in Mathematica to fit the coefficient based on the data at
each quarter (rather than just using the final distribution). For example, you’ll
have Mathematica fit the function µ(t) to the data:

{{0, 0}, {0.25, µ1}, {0.5, µ1+µ2}, {0.75, µ1+µ2+µ3}, {1, µ1+µ2+µ3+µ4}}

These fitting functions provide the estimate of the parameter and the standard
error in the parameter (use the “ParameterTable” field of the fit – see the
documentation) along with the p-value.

The p-value reported is the probability of getting an estimated coefficient this
far from 0 if there is no dependence on the coefficient. For example, a p-value
of 0.9 says that 90% of the time, we would fit a coefficient this different from 0
where there really is no dependence. Based on the reported p-values, was the
fit sufficient?
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If so, using the estimate and error for the mean vs. time and for the standard
deviation vs. time, is the model based only on final scores consistent with the
fitted data? More formally, are the coefficients used in the simple model from
subsection 1.2 consistent with those determined by the fits in this subsection?
How many “standard errors” away from each other are they? Is the difference
statistically significant at the 99% confidence level (i.e., should we be surprised
at the result from the simple model if it is indeed drawn from the one we
fitted)?

1.4 Results

Using results from subsection 1.3, present a visual indicating how all the games
compare with the average and standard deviation of the distribution at the
end of each quarter. You may want to use the ErrorListPlots module in
Mathematica. Feel free to explore different representations and include them in
your submitted Mathematica document.

1.5 Bonus: Single-Game Predictions

Does the Home Field Advantage work for a specific team? Select a team and
use a variation of the techniques above to determine if they are more likely to
win home games or away games.

1.6 Bonus: Working with Normal Distributions

Using the same “independence” approximations above, find the actual score
at half-time D2 for a few games, then predict the probability the team should
win, assuming the game is representative. In other words, based on µ3−4 =
µ3 + µ4, σ

2
3−4 = σ2

3 + σ2
4 and µf = D2 + µ3−4, σf = σ3−4 (with D2 being the

score difference at half-time), determine what certainty you have that the home
team will win the game.

2 Hubble Constant

Eureka! An undergraduate physicist at UT-Austin discovered a new type of
supernova – the Type XLIIeo! Fortunately, this mystery physicist determined
the peaks in the spectrum of Type XLIIeo supernovae and even took data from
distant examples! We may never know who this awesome person is, so there
will be no Nobel prize awarded for the work. Luckily for you, we’ve recovered
the data that will let you investigate the evolution of the universe!
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Peak λi σi ci
1100 Å 300 Å 1/12
1250 Å 8 Å 1/6
1400 Å 50 Å 1/36
1600 Å 80 Å 1/4
1750 Å 20 Å 13/36
1800 Å 125 Å 1/9

Table 2: Peaks, widths, and relative abundance of each component in the signal.
These may be visualized with Figure 2 and Equation 1.

2.1 The Model

Type XLIIeo supernovae are characterized by the peak wavelengths and widths
in Table 2. Surprisingly, for this type of supernovae, when signal is expressed
as a function of wavelength, we get a scaled Gaussian distribution. The light
emitted is based on the relative output at each peak as follows:

S∗(λ) =
∑
i

ci · σi · N [λi, σi](λ) (1)

where ci is the coefficient for the relative proportion of materials in the star
(same for all Type XLIIeo stars), λi is each of the peak wavelengths (with σi
being the standard deviation in their distribution), and N [µ, σ](x) being the
typically-defined Normal distribution as a function of x. This total distribution
and its component parts are visible in Figure 2.

Now that we have a model for a Type XLIIeo supernova’s output, we now have
to consider two important factors. First, the Doppler effect. This states that the
observed wavelength on Earth λE will be shifted from the original wavelength
λ0 based on the velocity of the star toward Earth:

λE =

√
c+ v

c− v
λ0 (2)

with v > 0 being the star moving away, and c being the speed of light (this is
the relativistic version). So each peak (in fact, each point in the data) should

be shifted by λ0 →
√

c+v
c−vλ0. We also have to modify our standard deviation

by the same factor (to convince yourself of this, consider shifting the mean λi
and a point one standard deviation away λi + σi).

Secondly, we must consider the effect of distance on the signal we get. If we
assume each Type XLIIeo supernova is identical in terms of output, then the
signal should be proportional to 1/d2, where d is the distance to the star from
Earth.
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Figure 2: Contribution to signal from each peak wavelength. Largest point on
distribution is total signal emitted in the reference frame of the star. Peak of
each component distribution is marked with a black line.

2.2 Analysis

Given the model in subsection 2.1, and the data here, you will determine the
Hubble constant. The Hubble Law says that the velocity of a galaxy away from
Earth is related to the distance by

v = H0d

This says that things that are farther away move away faster.1

The data are already in a convenient form. After using Import, the first di-
mension has the data for 15 different stars. Each star’s data is a list of points
(λ, S(λ)). Use this data, and the fact that the first set of data is 3 Mpc away
(for scaling) to determine what the distance and velocity of each star is. From
this, use the Hubble Law to obtain the Hubble constant. Hint: You will likely
want to use the NonlinearModelFit function with 1000 maximum iterations
and the “NMaximize” method of calculation.

What bounds can you place on the Hubble constant based on this data from
error in estimating parameters from the model fit? What about the distribution

1This expansion is caused by dark energy, and is consistent with a “metric expansion” of
space. If we center our coordinate system at any given point, it will look like all space is
expanding away from it. Cosmologists consider the universe to be isotropic (same in every
direction) and to obey the Copernican principle (no preferred center).
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of values you get for H0 from each star? Which contributes most to the width
of your estimate? Please report the Hubble constant in the “traditional” units
of (km/s)/Mpc.

3 Modern Lab

For those of you already in PHY 353L, this option is intended to allow you to
refine a past lab report to show us your mastery of Mathematica and LATEX.
If you choose this option, you will need to also produce a dataset (preferably
a CSV file or other portable document type) in addition to your Mathematica
and LATEX files.

3.1 Data Requirements

Reduce your original data to only the required information and provide it in
an easy-to-import file. For example, the Hubble Law option above simply gives
wavelength and signal, as those are the only relevant parameters, not the output
of an extraneous oscilloscope, not the time the data were collected (unless that
is important), etc. Furthermore, this file should have headers that are strings
(like the basketball data) that describe the data.

3.2 Mathematica Requirements

Provide a simple Mathematica document that flows from data input to final
calculations and graphs. We should be able to execute the code in the order
it appears on the page to produce results. Furthermore, each line should be
relevant to the final results. We have no idea which project you’ll choose to
write about, so you will need to write very clear code with significant comments
for us to see what your code is doing. You should also make very clear graphs,
ideally with histograms, best-fit lines, theoretical behavior, etc.

3.3 LATEXRequirements

This is not Modern Lab. In this class, we are less interested in the specifics of
your experimental setup or historical context. Your write-up should be done in
LATEX, detailing how the data are represented (see the example in Table 1), the
math you used to transform your raw data into results, how you put bounds
on your final result(s), the plots, etc. Your writing need not be overly technical
or primed for publication. You are free to talk about the actual code as well if
you did something you found interesting or helpful. We’ll use your LATEX code
for two purposes: to read about your methods of data analysis, and to see your
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mastery of the LATEX language. We should see advanced packages, formatting,
etc.

References

[1] http://www.basketballgeek.com/downloads/2008-2009.regular_

season.zip

8

http://www.basketballgeek.com/downloads/2008-2009.regular_season.zip
http://www.basketballgeek.com/downloads/2008-2009.regular_season.zip

	Home Field Advantage
	Game Results
	In-Game Progression
	Model-Fitting Game Progression
	Results
	Bonus: Single-Game Predictions
	Bonus: Working with Normal Distributions

	Hubble Constant
	The Model
	Analysis

	Modern Lab
	Data Requirements
	Mathematica Requirements
	LaTeXRequirements


