Bayesian Deep Learning

Extending Probabilistic Backpropagation and Transfer Learning

Evan Ott

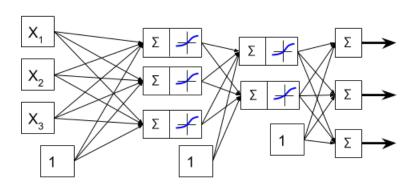
Advisor: Sinead Williamson November 2, 2018

Feedforward Neural Networks

For unknown weights $\{W_l\}_{l=1}^L$ and biases $\{\mathbf{b}_l\}_{l=1}^L$

$$\mathbf{z}_0 = \mathbf{x}$$

 $\mathbf{z}_l = \sigma_l \left(W_l \mathbf{z}_{l-1} + \mathbf{b}_l \right), \quad l = 1:L$



Neural Networks 2

Backpropagation (BP)

▶ BP minimizes a cost function, for example:

$$\min_{\mathcal{W}} \sum_{i=1}^{N} \|y_n - \mathtt{NN}(\mathbf{x}_n; \mathcal{W})\|_2^2$$

Cleverly applies chain rule of derivatives

$$y = e^{-wx},$$

$$z = \frac{1}{1 + e^{-y}}$$

$$\frac{dz}{dy} = z(1 - z),$$

$$\frac{dz}{dw} = \frac{dz}{dy}\frac{dy}{dw} = -yx\frac{dz}{dy}$$

$$= -\frac{xe^{-\exp[-wx] - wx}}{(e^{-\exp[-wx]} + 1)^2}$$

Deep Neural Networks

Advantages:

- ► Fast to train (e.g., SGD with backpropagation)
- Can achieve high accuracy/precision/recall
 - Identifying objects in images (Szegedy et al. 2015)
 - Melanoma detection from images (Esteva et al. 2017)
 - Tuberculosis detection from chest x-rays (Lakhani and Sundaram 2017)

Drawbacks:

- Typically, only provides point estimates
- Tendency for overfitting
- Unclear choice of structure

Christian Szegedy et al. Going Deeper with Convolutions. In: Computer Vision and Pattern Recognition. 2015.

Andre Esteva et al. Dermatologist-level Classification of Skin Cancer with Deep Neural Networks. In: *Nature* 542.7639 (2017), p. 115.

Paras Lakhani and Baskaran Sundaram. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by using Convolutional Neural Networks. In: Radiology 284.2 (2017), pp. 574–582.

Neural Networks

Our Bayesian Neural Network Model

Standard Neural Network

$$\begin{split} \hat{y}_n &= \texttt{NN}\left(\mathbf{x}_n; \mathcal{W}\right) \\ &= \mathbf{z}_L \\ \mathbf{z}_l &= \sigma_l\left(W_l \mathbf{z}_{l-1} + \mathbf{b}_l\right) \\ \mathbf{z}_0 &= \mathbf{x}_n \end{split}$$

Bayesian Neural Network

$$Y_{n}|\mathcal{W}, \gamma \sim \mathcal{N}\left(\mathcal{N}\mathcal{N}\left(\mathbf{x}_{n}; \mathcal{W}\right), \gamma^{-1}\right)$$

$$W_{ij,l}|\lambda \sim \mathcal{N}\left(0, \lambda^{-1}\right)$$

$$\gamma \sim \mathcal{G}a\left(\alpha_{0}^{\gamma}, \beta_{0}^{\gamma}\right)$$

$$\lambda \sim \mathcal{G}a\left(\alpha_{0}^{\lambda}, \beta_{0}^{\lambda}\right)$$

- Fixed element-wise activation functions $(\sigma_l(\mathbf{z}))_i = \text{ReLU}(z_i) = \max(z_i, 0)$
- lacktriangle Final layer's range is the real line $\sigma_L(\mathbf{z}) = \mathbf{z}$

Bayesian Neural Networks (BNNs)

The problem:

- Posterior (or posterior predictive, etc.) is intractable
- MCMC possible for small networks (Neal 1993)

Methods used for BNN inference:

- Assumed density filtering
- Dropout as deep GP (Gal and Ghahramani 2016)
- Expectation propagation (Soudry et al. 2014)
- Laplace approximation
- Variational inference

Radford M Neal. Bayesian Learning via Stochastic Dynamics. In: Advances in Neural Information Processing Systems. 1993, pp. 475–482.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. In: International Conference on Machine Learning. 2016, pp. 1050–1059.

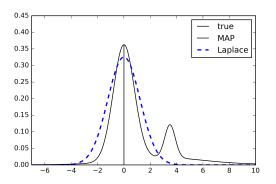
Daniel Soudry et al. Expectation Backpropagation: Parameter-free Training of Multilayer Neural Networks with Continuous or Discrete Weights. In: Advances in Neural Information Processing Systems. 2014, pp. 963–971.

Bayesian Neural Networks

6

Laplace Approximation

- Approximate posterior introduced by (MacKay 1992)
- ▶ Identify MAP estimate by standard backpropagation
- Locally-quadratic approximation to form a Gaussian
 - Requires computing Hessian

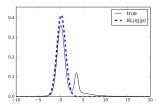


Variational Inference

- ▶ Posit variational family Q to approximate $p(W|\mathcal{D})$
- ▶ Identify $q(W) \in \mathcal{Q}$ that minimizes

$$KL(q(W)||p(W|\mathcal{D})) = \int_{\mathcal{W}} q(W) \log \left(\frac{q(W)}{p(W|\mathcal{D})}\right) dW$$

 Applied to BNNs by (Graves 2011) with MCMC likelihood, see also (Blundell et al. 2015)



Alex Graves. Practical Variational Inference for Neural Networks. In: Advances in Neural Information Processing Systems. 2011, pp. 2348–2356.

Assumed Density Filtering

Approximate Bayesian approach to online learning (Opper and Winther 1998)

- \blacktriangleright Approximate posterior $q(\theta|\gamma_t)$ at iteration t with parameters γ_t
 - For example, if q is Gaussian, $\gamma_t = (\mu_t, \sigma_t^2)$
- ▶ Given new data y_{t+1} :

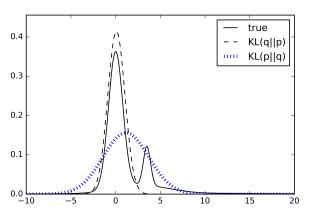
Update Update "exact" posterior:

$$p(\theta|y_{t+1}, \gamma_t) = \frac{p(y_{t+1}|\theta)q(\theta|\gamma_t)}{\int p(y_{t+1}|\theta)q(\theta|\gamma_t)d\theta}$$

Projection $\gamma_{t+1} := \arg\min_{\gamma} KL\left(p(\cdot|y_{t+1}, \gamma_t) \parallel q(\cdot|\gamma)\right)$

Assumed Density Filtering

For
$$q(\theta)=\mathcal{N}(\theta|m,v)$$
:
$$\mathbb{E}_{q^*}[\Theta]=\mathbb{E}_p[\Theta] \qquad \qquad \mathbb{V}_{q^*}[\Theta]=\mathbb{V}_p[\Theta]$$



ADF algorithm for BNNs (Hernández-Lobato and Adams 2015)

- ▶ Indep. Gaussian approximation for online posterior: $q(w_{ij,l}) = \mathcal{N}(w_{ij,l}|m_{ij,l},v_{ij,l})$
- ▶ Need to compute moments of "exact" posterior to find $\tilde{q}(w) = \mathcal{N}(w|\tilde{m},\tilde{v})$
- ▶ Use Gaussian properties (Minka 2001) in ADF "exact" step:

$$p(w|y) = \mathbf{Z}^{-1} f(y|w) \mathcal{N}(w|m, v)$$

$$\mathbb{E}_{\tilde{q}}[W] = \tilde{m} = \mathbb{E}_{p}[W] = m + v \frac{\partial \log \mathbf{Z}}{\partial m}$$

$$\mathbb{V}_{\tilde{q}}[W] = \tilde{v} = \mathbb{V}_{p}[W] = v - v^{2} \left[\left(\frac{\partial \log \mathbf{Z}}{\partial m} \right)^{2} - 2 \frac{\partial \log \mathbf{Z}}{\partial v} \right]$$

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks. In: International Conference on Machine Learning. 2015, pp. 1861–1869.

Thomas Peter Minka. A family of algorithms for approximate Bayesian inference. PhD thesis. Massachusetts Institute of Technology, 2001.

$$\begin{split} Z &= \int \mathcal{N}(y_n | \text{NN}(\mathbf{x}_n; \mathcal{W}), \gamma^{-1}) q(\mathcal{W}, \gamma, \lambda) d\mathcal{W} d\gamma d\lambda \\ &\approx \int \mathcal{N}(y_n | z_L, \gamma^{-1}) \mathcal{N}(z_L | m^{z_L}, v^{z_L}) \text{Ga}(\gamma | \alpha^{\gamma}, \beta^{\gamma}) dz_L d\gamma \\ &= \int \mathcal{T}(y_n | z_L, \beta^{\gamma} / \alpha^{\gamma}, 2\alpha^{\gamma}) \mathcal{N}(z_L | m^{z_L}, v^{z_L}) dz_L \\ &\approx \int \mathcal{N}(y_n | z_L, \beta^{\gamma} / (\alpha^{\gamma} - 1)) \mathcal{N}(z_L | m^{z_L}, v^{z_L}) dz_L \\ &= \mathcal{N}(y_n | m^{z_L}, \beta^{\gamma} / (\alpha^{\gamma} - 1) + v^{z_L}) \end{split}$$

$$\begin{split} Z &= \int \mathcal{N}(y_n | \text{NN}(\mathbf{x}_n; \mathcal{W}), \gamma^{-1}) q(\mathcal{W}, \gamma, \lambda) d\mathcal{W} d\gamma d\lambda \\ &\approx \int \mathcal{N}(y_n | \mathbf{z}_L, \gamma^{-1}) \mathcal{N}(\mathbf{z}_L | m^{\mathbf{z}_L}, v^{\mathbf{z}_L}) \text{Ga}(\gamma | \alpha^{\gamma}, \beta^{\gamma}) d\mathbf{z}_L d\gamma \\ &= \int \mathcal{T}(y_n | \mathbf{z}_L, \beta^{\gamma} / \alpha^{\gamma}, 2\alpha^{\gamma}) \mathcal{N}(\mathbf{z}_L | m^{\mathbf{z}_L}, v^{\mathbf{z}_L}) d\mathbf{z}_L \\ &\approx \int \mathcal{N}(y_n | \mathbf{z}_L, \beta^{\gamma} / (\alpha^{\gamma} - 1)) \mathcal{N}(\mathbf{z}_L | m^{\mathbf{z}_L}, v^{\mathbf{z}_L}) d\mathbf{z}_L \\ &= \mathcal{N}(y_n | m^{\mathbf{z}_L}, \beta^{\gamma} / (\alpha^{\gamma} - 1) + v^{\mathbf{z}_L}) \end{split}$$

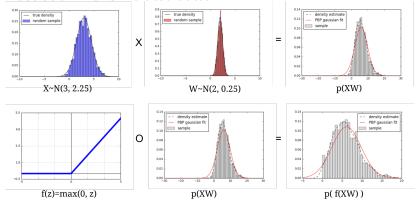
$$\begin{split} Z &= \int \mathcal{N}(y_n|\text{NN}(\mathbf{x}_n;\mathcal{W}), \gamma^{-1})q(\mathcal{W}, \gamma, \lambda)d\mathcal{W}d\gamma d\lambda \\ &\approx \int \mathcal{N}(y_n|z_L, \gamma^{-1})\mathcal{N}(z_L|m^{z_L}, v^{z_L})\text{Ga}(\gamma|\alpha^{\gamma}, \beta^{\gamma})dz_L d\gamma \\ &= \int \mathcal{T}(y_n|z_L, \beta^{\gamma}/\alpha^{\gamma}, 2\alpha^{\gamma})\mathcal{N}(z_L|m^{z_L}, v^{z_L})dz_L \\ &\approx \int \mathcal{N}(y_n|z_L, \beta^{\gamma}/(\alpha^{\gamma}-1))\mathcal{N}(z_L|m^{z_L}, v^{z_L})dz_L \\ &= \mathcal{N}(y_n|m^{z_L}, \beta^{\gamma}/(\alpha^{\gamma}-1) + v^{z_L}) \end{split}$$

$$\begin{split} Z &= \int \mathcal{N}(y_n | \text{NN}(\mathbf{x}_n; \mathcal{W}), \gamma^{-1}) q(\mathcal{W}, \gamma, \lambda) d\mathcal{W} d\gamma d\lambda \\ &\approx \int \mathcal{N}(y_n | z_L, \gamma^{-1}) \mathcal{N}(z_L | m^{z_L}, v^{z_L}) \text{Ga}(\gamma | \alpha^{\gamma}, \beta^{\gamma}) dz_L d\gamma \\ &= \int \mathcal{T}(y_n | z_L, \beta^{\gamma} / \alpha^{\gamma}, 2\alpha^{\gamma}) \mathcal{N}(z_L | m^{z_L}, v^{z_L}) dz_L \\ &\approx \int \mathcal{N}(y_n | z_L, \beta^{\gamma} / (\alpha^{\gamma} - 1)) \mathcal{N}(z_L | m^{z_L}, v^{z_L}) dz_L \\ &= \mathcal{N}(y_n | m^{z_L}, \beta^{\gamma} / (\alpha^{\gamma} - 1) + v^{z_L}) \end{split}$$

$$\begin{split} Z &= \int \mathcal{N}(y_n | \text{NN}(\mathbf{x}_n; \mathcal{W}), \gamma^{-1}) q(\mathcal{W}, \gamma, \lambda) d\mathcal{W} d\gamma d\lambda \\ &\approx \int \mathcal{N}(y_n | z_L, \gamma^{-1}) \mathcal{N}(z_L | m^{z_L}, v^{z_L}) \text{Ga}(\gamma | \alpha^{\gamma}, \beta^{\gamma}) dz_L d\gamma \\ &= \int \mathcal{T}(y_n | z_L, \beta^{\gamma} / \alpha^{\gamma}, 2\alpha^{\gamma}) \mathcal{N}(z_L | m^{z_L}, v^{z_L}) dz_L \\ &\approx \int \mathcal{N}(y_n | z_L, \beta^{\gamma} / (\alpha^{\gamma} - 1)) \mathcal{N}(z_L | m^{z_L}, v^{z_L}) dz_L \\ &= \mathcal{N}(y_n | m^{z_L}, \beta^{\gamma} / (\alpha^{\gamma} - 1) + v^{z_L}) \end{split}$$

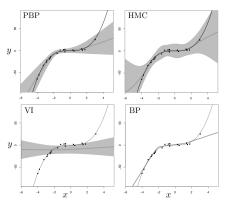
Compute m^{z_l}, v^{z_l} by minimizing KL between true distribution and a Gaussian for each step in network

Illustration with simulated data:



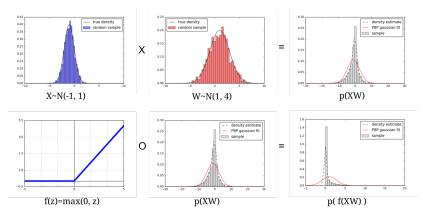
PBP Properties

- Trains like standard DNN, so it's fast
- ► Extended by (Ghosh et al. 2016) to binary classification (probit) and multiclass via MCMC step



Soumya Ghosh et al. Assumed Density Filtering Methods for Learning Bayesian Neural Networks. In: AAAI Conference on Artificial Intelligence. 2016, pp. 1589-1595.

Current Work



Led to questions about Gaussian approximation - replace with spike and slab?

$$Z_l \sim (1 - \pi^{z_l})\delta_0 + \pi^{z_l} \mathcal{N}(m^{z_l}, v^{z_l})$$

Spike-and-slab PBP

In order to sequentially compute the parameters of $q(z_l)$, need:

- ► Conditions to minimize KL(p||q) for $q = (1 \pi)\delta_0 + \pi \mathcal{N}(m, v)$
 - Spoiler alert, need $\mathbb{P}_p[Z=0], \mathbb{E}_p[Z], \mathbb{V}_p[Z]$
- Compute moments of p with closed-form expressions for linear combination and activation steps
- Compute normalization constant Z

KL Minimization

For $q(z;\pi,m,v)=(1-\pi)\delta_0(z)+\pi\mathcal{N}(z;m,v)$, need to minimize KL:

$$\begin{split} 0 &= \frac{d}{dm} KL(p||q) = -\frac{d}{dm} \int_{\mathbb{R}} p(z) \log(q(z)) dz \\ &= -\int_{\mathbb{R}} p(z) \frac{\frac{\partial}{\partial m} \left((1 - \pi) \delta_0(z) + \pi \mathcal{N}(z; m, v) \right)}{(1 - \pi) \delta_0(z) + \pi \mathcal{N}(z; m, v)} dz \\ &= -\frac{1}{v} \left(\mathbb{E}_p \left[Z \right] - m \right) + \int_{\mathbb{R}} p(z) \frac{(1 - \pi) \delta_0(z) \left(\frac{z - m}{v} \right)}{(1 - \pi) \delta_0(z) + \pi \mathcal{N}(z; m, v)} dz \end{split}$$

If all mass on slab, recover $m = \mathbb{E}_p[Z]$

KL Minimization

Approximate δ_0 as limiting distribution of $u_a = \mathrm{Unif}([-1/(2a), 1/(2a)])$ as $a \to \infty$:

$$I = \lim_{a \to \infty} \int_{\mathbb{R}} p(z) \frac{(1-\pi)u_a(z) \left(\frac{z-m}{v}\right)}{(1-\pi)u_a(z) + \pi \mathcal{N}(z; m, v)} dz$$
$$= \lim_{a \to \infty} \int_{-1/2a}^{1/2a} p(z) \frac{(1-\pi)a \left(\frac{z-m}{v}\right)}{(1-\pi)a + \pi \mathcal{N}(z; m, v)} dz$$

Introduce approximation for $(1 - \pi)a \gg \pi \mathcal{N}(z; m, v)$:

$$\begin{split} I &\approx \lim_{a \to \infty} \int_{-1/2a}^{1/2a} p(z) \frac{(1-\pi)a\left(\frac{z-m}{v}\right)}{(1-\pi)a} dz \\ &= \lim_{\epsilon \to 0^+} \int_{-\epsilon}^{\epsilon} p(z) \left(\frac{z-m}{v}\right) dz = -\frac{m}{v} \mathbb{P}_p[Z=0] \end{split}$$

KL Minimization

Recover moment-matching along with spike-probability matching:

$$\mathbb{P}_{q}[Z=0] = \mathbb{P}_{p}[Z=0] \qquad \qquad \tilde{\pi} = 1 - \mathbb{P}_{p}[Z=0]$$

$$\mathbb{E}_{q}[Z] = \mathbb{E}_{p}[Z] \qquad \qquad \tilde{m} = \frac{1}{\tilde{\pi}} \mathbb{E}_{p}[Z]$$

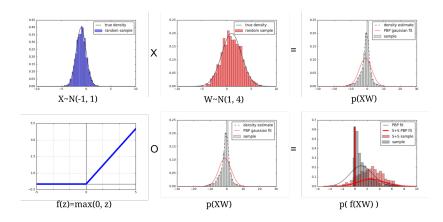
$$\mathbb{V}_{q}[Z] = \mathbb{V}_{p}[Z] \qquad \qquad \tilde{v} = \frac{\mathbb{V}_{p}[Z] - \tilde{\pi}(1 - \tilde{\pi})\tilde{m}^{2}}{\tilde{\pi}}$$

Obtain modified normalization constant, but same posterior update rules:

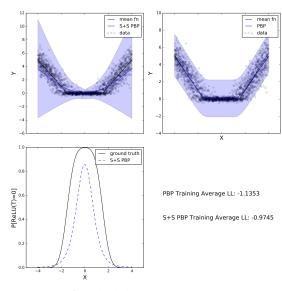
$$Z = (1 - \pi^{z_L}) \mathcal{N}(y_n | 0, \beta^{\gamma} / (\alpha^{\gamma} - 1))$$

$$+ \pi^{z_L} \mathcal{N}(y_n | m^{z_L}, \beta^{\gamma} / (\alpha^{\gamma} - 1) + v^{z_L})$$

Forward Pass Approximation



Toy Data



$$Y|T = \mathcal{N}(\text{ReLU}(T), 0.02)$$
$$T \sim \mathcal{N}(2|x| - 3, 1)$$

- PBP matches mean function more closely
- S+S PBP leverages sparsity for higher log-likelihood

Future Work

Classification Alternative to softmax without MCMC?

$$\hat{p}_i = \text{Softmax}_i(\mathbf{x}) = \frac{e^{x_i}}{\sum_j e^{x_j}}$$
$$\tilde{p}_i = p(\text{NN}(\mathbf{x}; \mathcal{W}) \in \mathcal{A}_i)$$

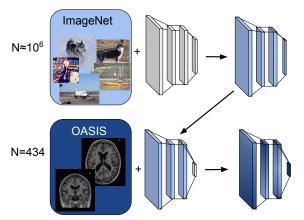
Pooling Need approximation for $p(\max(X_1, X_2, \dots, X_k))$

-2	-5	-6	-5
5	10	-2	-1
4	3	6	7
1	2	8	7

Future Work 26

Future Work

Bayesian version of transfer learning



Olga Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. In: International Journal of Computer Vision 115.3 (2015), pp. 211–252.

Daniel S Marcus et al. Open Access Series of Imaging Studies: Longitudinal MRI Data in Nondemented and Demented Older Adults. In: *Journal of Cognitive Neuroscience* 22.12 (2010), pp. 2677–2684. Future Work

Thanks

Questions?

This presentation:

https://www.evanott.com/research/sds_seminar_2018.pdf

Thanks 28

References I

- Blundell, Charles, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight Uncertainty in Neural Networks. In: arXiv preprint arXiv:1505.05424 (2015).
- Esteva, Andre, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau, and Sebastian Thrun. Dermatologist-level Classification of Skin Cancer with Deep Neural Networks. In: *Nature* 542.7639 (2017), p. 115.
- Gal, Yarin and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. In: *International Conference on Machine Learning*. 2016, pp. 1050–1059.
 - Ghosh, Soumya, Francesco Maria Delle Fave, and Jonathan S Yedidia. Assumed Density Filtering Methods for Learning Bayesian Neural Networks. In: AAAI Conference on Artificial Intelligence. 2016, pp. 1589–1595.

References II

- Graves, Alex. Practical Variational Inference for Neural Networks. In: *Advances in Neural Information Processing Systems*. 2011, pp. 2348–2356.
- Hernández-Lobato, José Miguel and Ryan Adams. Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks. In: *International Conference on Machine Learning*. 2015, pp. 1861–1869.
- Lakhani, Paras and Baskaran Sundaram. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by using Convolutional Neural Networks. In: Radiology 284.2 (2017), pp. 574–582.
- MacKay, David JC. A Practical Bayesian Framework for Backpropagation Networks. In: *Neural Computation* 4.3 (1992), pp. 448–472.

References III

- Marcus, Daniel S, Anthony F Fotenos, John G Csernansky, John C Morris, and Randy L Buckner. Open Access Series of Imaging Studies: Longitudinal MRI Data in Nondemented and Demented Older Adults. In: *Journal of Cognitive Neuroscience* 22.12 (2010), pp. 2677–2684.
- Minka, Thomas Peter. A family of algorithms for approximate Bayesian inference. PhD thesis. Massachusetts Institute of Technology, 2001.
- Neal, Radford M. Bayesian Learning via Stochastic Dynamics. In: Advances in Neural Information Processing Systems. 1993, pp. 475–482.
- Opper, Manfred and Ole Winther. A Bayesian Approach to On-line Learning. In: *On-line Learning in Neural Networks, ed. D. Saad* (1998), pp. 363–378.

References IV

Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. In: International Journal of Computer Vision 115.3 (2015), pp. 211–252.

Soudry, Daniel, Itay Hubara, and Ron Meir. Expectation Backpropagation: Parameter-free Training of Multilayer Neural Networks with Continuous or Discrete Weights. In: Advances in Neural Information Processing Systems. 2014, pp. 963–971.

References V

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going Deeper with Convolutions. In: *Computer Vision and Pattern Recognition*. 2015.

Hamiltonian Monte Carlo

- Let q be the parameters of our distribution P(q)
- ▶ Define potential energy E(q) as $P(q) \propto \exp(-E(q))$
- Augment space to include momentum vector p, same dimension as q
- ▶ Define Hamiltonian $H(q,p) = E(q) + \frac{1}{2} ||p||_2^2$
- Use Hamiltonian dynamics for equal-energy trajectories:

$$\frac{dq}{dt} = \frac{\partial H}{\partial p} = p$$
 $\frac{dp}{dt} = -\frac{\partial H}{\partial q} = -\nabla E(q)$

- ▶ Use log posterior $-\log P(q) = -\log f(X|q) \log \pi(q) + \log p(X)$
- ► Find valid state, give it a kick, follow trajectory, move via Metropolis-Hastings.

Dropout as Variational Inference

(Gal and Ghahramani 2016)

- Stochastically set nodes in network to o
- Connection to deep Gaussian process
- Really, dropout is a regularizer
- Matt Taddy and others: variational dropout provides poor variance estimates

Gaussian Properties

(Minka 2001) showed for
$$q(\theta) = \mathcal{N}(\theta|m,v)$$

$$p(\theta|x) = Z^{-1}f(x|\theta)q(\theta)$$

$$Z = \int_{\theta} f(x|\theta)q(\theta)d\theta$$

$$\frac{d}{dm}\log Z = \frac{1}{Z}\int_{\theta} \frac{(\theta-m)}{v}f(x|\theta)\frac{1}{\sqrt{2\pi v}}\exp\left[-\frac{(\theta-m)^2}{2v}\right]d\theta$$

$$= \int_{\theta} \frac{(\theta-m)}{v}\frac{f(x|\theta)q(\theta)}{Z}d\theta$$

$$= \int_{\theta} \frac{(\theta-m)}{v}p(\theta|x)d\theta = \frac{1}{v}(\mathbb{E}_p[\Theta] - m)$$

$$\mathbb{E}_p[\Theta] = m + v\frac{d}{dm}\log Z$$