Bayesian Deep Learning
Extending Probabilistic Backpropagation and Transfer
Learning

The University of Texas at Austin Evan Ott
Department of Statistics
and Data Sciences Advisor: Sinead Williamson

College of Natural Sciences November 2, 2018



Feedforward Neural Networks
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Backpropagation (BP)

» BP minimizes a cost function, for example:
N
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» Cleverly applies chain rule of derivatives
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Deep Neural Networks

Advantages:
» Fast to train (e.g., SGD with backpropagation)
» Can achieve high accuracy/precision/recall

- Identifying objects in images (Szegedy et al. 2015)

- Melanoma detection from images (Esteva et al. 2017)

- Tuberculosis detection from chest x-rays (Lakhani and
Sundaram 2017)

Drawbacks:
» Typically, only provides point estimates
» Tendency for overfitting
» Unclear choice of structure

Christian Szegedy et al. Going Deeper with Convolutions. |n: Computer Vision and Pattern Recognition. 2015.

Andre Esteva et al. Dermatologist-level Classification of Skin Cancer with Deep Neural Networks. |n: Nature 542.7639
(2017), p. 115.

Paras Lakhani and Baskaran Sundaram. Deep Learning at Chest Radiography: Automated Classification of Pulmonary
Tuberculosis by using Convolutional Neural Networks. |n: Radiology 284.2 (2017), pp. 574-582.
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Our Bayesian Neural Network Model

Standard Neural Network Bayesian Neural Network
Un = NN (x,; W) Yo[W, 5 ~ N (NN (x; W) , 71
=17y, Wij,l|/\ ~ N (0, )\_1)
z; = o, (Wizi—1 + by) v ~ Ga(ag, G)
ZO = XTL >\ ~ Ga (a()]" BS‘)

» Fixed element-wise activation functions
(01(z)); = ReLU(z;) = max(z;,0)
» Final layer's range is the real line o, (z) = =
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Bayesian Neural Networks (BNNs)

The problem:
» Posterior (or posterior predictive, etc.) is intractable
» MCMC possible for small networks (Neal 1993)
Methods used for BNN inference:
» Assumed density filtering
Dropout as deep GP (Gal and Ghahramani 2016)
Expectation propagation (Soudry et al. 2014)
Laplace approximation

v

v

v

v

Variational inference

Radford M Neal. Bayesian Learning via Stochastic Dynamics. In: Advances in Neural Information Processing Systems.
1993, pp. 475-482.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep
Learning. In: International Conference on Machine Learning. 2016, pp. 1050-1059.

Daniel Soudry et al. Expectation Backpropagation: Parameter-free Training of Multilayer Neural Networks with Con-
tinuous or Discrete Weights. In: Advances in Neural Information Processing Systems. 2014, pp. 963-971.
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Laplace Approximation

» Approximate posterior introduced by (MacKay 1992)

» |dentify MAP estimate by standard backpropagation
» Locally-quadratic approximation to form a Gaussian
- Requires computing Hessian
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David JC MacKay. A Practical Bayesian Framework for Backpropagation Networks. |n: Neural Computation 4.3 (1992),

. 448-472.
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Variational Inference

» Posit variational family Q to approximate p(W|D)
» |dentify ¢(W) € Q that minimizes
(W)
KL(gW)|p(W|D :/ q(W log()dW
@) lpWIP) = | a(W)log (s

» Applied to BNNs by (Graves 2011) with MCMC likelihood,
see also (Blundell et al. 2015)

— true
- = Kullp)

Alex Graves. Practical Variational Inference for Neural Networks.  In: Advances in Neural Information Processing
Systems. 2011, pp. 2348-2356.

Charles Blundell et al. Weight Uncertainty in Neural Networks. [n: arXiv preprint arXiv:1505.05424 (2015).
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Assumed Density Filtering

Approximate Bayesian approach to online learning (Opper and
Winther 1998)

» Approximate posterior ¢(f|v;) at iteration ¢ with
parameters

- For example, if ¢ is Gaussian, v; = (g, 0?)
» Given new data y;41:
Update Update “exact” posterior:

o P(Y+110)q(0]ve)
POy = o 18)q(6])d8

Projection 741 := argmin, KL (p(-|ye+1,ve) || a(-|7))

Manfred Opper and Ole Winther. A Bayesian Approach to On-line Learning. [n: On-line Learning in Neural Networks,
ed. D. Saad (1998), pp. 363-378.
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Assumed Density Filtering

For ¢(0) = N (0|m,v):

Ep[0] = Ep[©] V- [0] =V, O]
— ‘true
o4 - - Kuallp) ||
i KL(p|la)
03} ]
0.2t _
0.1t _
T 15 20
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Probabilistic Backpropagation (PBP)

ADF algorithm for BNNs (Hernandez-Lobato and Adams 2015)
» Indep. Gaussian approximation for online posterior:
q(wijg) = N (wijalmiji, vija)
» Need to compute moments of “exact” posterior to find
G(w) = N (wl|m, v)

» Use Gaussian properties (Minka 2001) in ADF “exact” step:

p(wly) = Z7" f(ylw)N (w|m, v)

- dlog Z
EqW] =m =Ep[W] =m +v— "~
. Olog Z 2 dlog Z
~ — e P— [— 2 _—
VW]l =0=Vp[W]=v—-v ( S > 2 50

José Miguel Hernandez-Lobato and Ryan Adams. Probabilistic Backpropagation for Scalable Learning of Bayesian
Neural Networks. In: International Conference on Machine Learning. 2015, pp. 1861-1869.

Thomas Peter Minka. A family of algorithms for approximate Bayesian inference. PhD thesis. Massachusetts Institute
of Technology, 2001.
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Probabilistic Backpropagation (PBP)

Closed-form approximation for normalization constant:

Z= / N (N (303 W), 7~ D) g (W, 7, A) Wiy
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Probabilistic Backpropagation (PBP)

Closed-form approximation for normalization constant:
Z = /N(anNN(xn;W),’fl)tJ(W,% A)dWdrydA

~ / Ngalzz, 7N (zlm™ v )Galyla?, B)dz=1dvy
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Probabilistic Backpropagation (PBP)

Closed-form approximation for normalization constant:
Z= [ NG W),7™ a0, VWi
~ [ Nnlewo DN Gl o7 )Gay a7, 87)dzvdy

- / T (yulor, 7 /0, 207N (2 [mE 072 )z,
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Probabilistic Backpropagation (PBP)

Closed-form approximation for normalization constant:
Z = / N (Y |[NN(355; W), v~ gV, 7y, \)dWdryd A
~ //\/'(yn|zL,’y_1)./\/'(zL|mzL,UZL)Ga(’y]aV,BV)dzLdfy
— /T(yn|zL,ﬂ7/a7,20[7)/\/'(2L]mZL,vZL)dZL

~ /N(yn!ZL,B”/(Oﬂ — )N (zr|m™, v™)dzy,
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Probabilistic Backpropagation (PBP)

Closed-form approximation for normalization constant:
Z = / N (Y |[NN(355; W), v~ gV, 7y, \)dWdryd A
~ //\/'(yn|zL,’y_1)./\/'(zL|mzL,UZL)Ga(’y]aV,BV)dzLdfy
— /T(yn|zL,ﬂ7/a7,20[7)/\/'(2L]mZL,vZL)dZL

- / N(ynlzn, 8707 — 1IN (22 Jm*, v )dzp
= N (yn|m®, 87 /(a” — 1) + vF)
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Probabilistic Backpropagation (PBP)

Compute m*, v* by minimizing KL between true distribution
and a Gaussian for each step in network

[llustration with simulated data:

X~N(3, 2.25) W~N(2, 0.25)

f(z)=max(0, z) p(f(Xw))

Bayesian Neural Networks: Probabilistic Backpropagation 17



PBP Properties

» Trains like standard DNN, so it's fast
» Extended by (Ghosh et al. 2016) to binary classification
(probit) and multiclass via MCMC step
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Soumya Ghosh et al. Assumed Density Filtering Methods for Learning Bayesian Neural Networks. In: AAA/ Conference
on Artificial Intelligence. 2016, pp. 1589-1595.
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Current Work

£(~N(—1, 1)

f(z)=max(0, z) pPEW) p(fXW))

Led to questions about Gaussian approximation - replace with
spike and slab?

Zp ~ (1 —7)8p + 72N (m™, v™)

Current Work: Spike-and-Slab 19



T ——
Spike-and-slab PBP

In order to sequentially compute the parameters of ¢(z;), need:

» Conditions to minimize K L(p||q) for
q=(1—m)dp+ 7N(m,v)
- Spoiler alert, need P,[Z = 0],E,[Z],V,[Z]

» Compute moments of p with closed-form expressions for
linear combination and activation steps

» Compute normalization constant Z

Current Work: Spike-and-Slab 20
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KL Minimization

For q(z;m,m,v) = (1 — m)dp(z) + 7N (z; m,v), need to minimize
KL:

= L kLl = —/ ) log(q

_ . am (1 =m)dp(2) + 7N (z;m,v))
- /Rpm :

1 —m)do(z) + 7N (z;m,v) dz

) (1= m)do(2) (53™)
_—;(Ep [Z]_m)+/]Rp(z)(1—7T)5O( )+ 7N (z; ,v)dz

If all mass on slab, recover m = E,[Z]

Current Work: KL Minimization 21
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KL Minimization

Approximate dp as limiting distribution of
ug = Unif([—1/(2a),1/(2a)]) as a — oc:

(1 —m)ug(2) (%)
1 — mug(z) + 7N (z;m,v)
= lim e z <1 _ ﬂ)a (z_”m)
a=%0 | 194 (1—m)a+ 7N (z;m,v)

I = lim p(z)(

a—o0 R

dz

Introduce approximation for (1 — w)a > 7N (z;m,v):

1/2a 1— z—m
I~ lim p(z)( 177)_a( v )dz
=00 J_1/2q ( m)a

—iim [ p2) (z _Um) dz = —%Pp[z = 0]

e—0+ J_¢
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KL Minimization

Recover moment-matching along with spike-probability

matching:
Py[Z = 0] =Fp[Z = 0] #=1-P,[Z =0
Eq[Z] = Ep[Z] i = %Ep[z]
V,[Z] = V,|Z] 5 VolZ] - 7(1 = 7

Obtain modified normalization constant, but same posterior
update rules:

Z = (1=7)N(yn|0, 87/(a” — 1))
+ WZLN(yn‘mZLa /B’Y/(CV’y - 1) + UZL)

Current Work: KL Minimization 23



Forward Pass Approximation
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Current Work: KL Minimization

~ density estimate

PBP gaussian fit
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Toy Data

— meanfn
10 — S+SPBP
data

Y|T = N (ReLU(T), 0.02)
T ~ N(2]z| — 3,1)

- X » PBP matches
mean function
more closely

PBP Training Average LL: -1.1353 > S+S P B P
leverages

S+S PBP Training Average LL: -0.9745 Spa rSIty for
higher
log-likelihood

=0]

P[ReLU(T)
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Future Work

Classification Alternative to softmax without MCMC?

eti

— Z] o
pi = p(NN(x; W) € A;)

p; = Softmax;(x)

Pooling Need approximation for p (max (X1, Xa,..., X;))

Future Work 26



Future Work

Bayesian version of transfer learning

ImageNet

!

- m
Olga Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. In: International Journal of Computer
Vision 115.3 (2015), pp. 211-252.

Daniel S Marcus et al. Open Access Series of Imaging Studies: Longitudinal MRI Data in Nondemented and Demented
Older Adults. In: Journal of Cognitive Neuroscience 22.12 (2010), pp. 2677-2684.
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Thanks

Questions?

This presentation:
https://www.evanott.com/research/sds_seminar_2018.pdf

Thanks 28


https://www.evanott.com/research/sds_seminar_2018.pdf
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Hamiltonian Monte Carlo

» Let ¢ be the parameters of our distribution P(q)
» Define potential energy E(q) as P(q) x exp(—FE(q))

» Augment space to include momentum vector p, same
dimension as ¢

» Define Hamiltonian H(q,p) = E(q) + 3|pl5
» Use Hamiltonian dynamics for equal-energy trajectories:

dq OH dp oOH
_— = — = _— = —— = — E
dt Op b dt dq VE(9)

» Use log posterior
—log P(q) = —log f(X|q) —logm(q) + log p(X)

» Find valid state, give it a kick, follow trajectory, move via
Metropolis-Hastings.

Appendix: MCMC
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Dropout as Variational Inference

(Gal and Ghahramani 2016)
» Stochastically set nodes in network to o
» Connection to deep Gaussian process
» Really, dropout is a regularizer

» Matt Taddy and others: variational dropout provides poor
variance estimates

Gal and Ghahramani 2016.
Appendix: Dropout
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Gaussian Properties

(Minka 2001) showed for ¢(0) = N'(0|m,v)

p(0lz) = Z~" f(2]0)q(0)

- / [(16)q(0)d6

—10 Z—

exp {— (9 _2;")2] a0

1
ﬁ
9 m)(!)(9)

/0 - o

- /9 (Q*m)p(emda = 1(E,,[@] —m)

v v

d
]Ep[@] =m -+ U% IOgZ

Minka 2001.
Appendix: Gaussian Properties
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